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Boundary dissipation of oscillatory waves 

By W. G. VAN DORN 
Scripps Institution of Oceanography, University of California, San Diego 

(Received 14 April 1965 and in revised form 17 September 1965) 

The attenuation of progressive, dispersive, oscillatory wave systems by dissipa- 
tion within the viscous boundary layer in a long laboratory channel was studied 
both experimentally and theoretically, for the conditions of uniform water depth 
and over uniform impermeable slopes. In  general, the observed dissipation ex- 
ceeded that predicted by linear, small-amplitude theory for the boundary 
layer on the sides and bottom of the channel. On the hypothesis that the addi- 
tional dissipation might be due to the presence of a similar boundary layer at  the 
free water surface, the theory is extended to include the surface effect. The 
experimental results essentially confirm the theory-even in the markedly non- 
linear region near shore. 

1. Introduction 
Many experimenters have reported that the observed attenuation coefficients 

for oscillatory waves propagating in a rectangular channel appear to be sub- 
stantially greater than can be explained by viscous damping within the boundary 
layers on the sides and bottoms of their channels. In  a recent review, Hunt 
(1963) remarks: ‘The attenuation predicted by linear theory does not appear 
ever to have been verified with much accuracy, although when correctly applied 
the error is not as much as the 35 yo quoted by Grosch (1962).’ An alternative, but 
unconvincing, attempt to explain the excess dissipation by assuming shear 
separation and a quadratic velocity distribution within the boundary layer was 
proposed by Eagleson (1959). A similar effect was observed by the author during 
an experimental investigation of the reflexion of dispersive, oscillatory wave 
systems from sloping beaches, where it was found necessary (because of the small 
scale of the experiment) to account mathematically for the viscous attenuation 
in order to explain the observed enhancement in shoaling water. In  these experi- 
ments it was found that while the observed attenuation agreed with that com- 
puted for the solid boundaries when the water was fresh, the former tended to 
increase with time to some higher limiting value, usually within an hour. 

Surprisingly, no one seems to have suggested that this discrepancy might 
arise through neglect of dissipation at the free surface, because of a contami- 
nating surface film almost invariably present unless the surface is specially 
prepared, although Keulegan (1959) found reasonably good agreement with 
the linear theory for standing waves when the surface was kept clean. The theory 
of dissipation of deep water waves by contaminating surface films is discussed 
briefly by Lamb (1945) and in considerable detail by Dorrestein (1951), and has 
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been beautifully confirmed by the experimental investigations of Davies & 
Vose (1965). Physically, wave supression by films is due to the variations of 
surface tension caused by extensions and contractions of the contaminated 
surface. 

Mathematically, the total viscous dissipation for plane, monochromatic 
waves propagating over a distance x in deep water can be expressed in terms of a 
damping coefficient A by 

7 = qoe-*z, (1) 

where 7 and qo are the initial and final wave amplitudes, respectively. At constant 
frequency w ,  A increases with increasing surface contamination from its initial 
value for a clean (mobile) surface, A, = 8vkz/U, to a limiting value for a fully 
contaminated (immobile) surface, 

where k = 2n/h is the wave-number, v is the kinematic viscosity, and $7 is the 
wave group velocity. The transition A, + Aim, depends quite intimately upon 
the surface chemistry of the contaminating agent and, under certain conditions, 
may pass through an intervening maximum. However, if, as in the following, 
we confine ourselves to frequencies lower than about 3 cycles/sect, the transition 
is smooth and, as shown below, appears to reach completion even at  the small 
concentrations of contaminants usually present in ordinary tap water. The 
end state A = Aim, is characterized by annulment of the horizontal component 
of wave velocity a t  the surface while, for oscillations of small amplitude (7 4 A ) ,  
the vertical component of the motion is essentially unaffected by the film. 

In  the present paper an expression is obtained for the surface-film effect on 
gravity waves in water of finite depth, under the assumption that the surface is 
fully contaminated (immobile). It is shown that this effect, when combined with 
the attenuation predicted for a viscous laminar layer on the boundaries of the 
wave channel, suffices to explain the observed total dissipation, except in the 
cases where special measures were taken to prevent surface contamination. 
Because the surface dissipation may often be larger than that on the boundaries 
under experimental conditions common to wave model studies, and also because 
it is almost impossible to maintain a clean surface under ordinary laboratory 
conditions, it  is suggested that model results may often be seriously in error 
unless the former is taken into account. 

2. Viscous dissipation in a rectangular channel 
In a channel of uniform width 6 and depth h the damping coefficient A, due 

to boundary dissipation of periodic gravity waves has been given by Hunt (1 952) 
as 

(3) 

t Equation (2) involves the surface tension implicitly in so far as it affects the group 
velocity. This effect also becomes negligible a t  low frequencies. 
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Under the same conditions, and assuming the free surface to be horizontally 
immobilized, the surface damping coefficient As can be expressed in similar form 
as (Appendix 1) 

2k v * kbdnk2kh 
A =-(-) b 2w 2kh+&nhWh' (4) 

When, as in the present experiments, the wave train is dispersive, having been 
generated by a single impulsive disturbance, the damping can still be computed 
by (3) and (4) provided only that each frequency is referred to its appropriate 
spectral amplitude q[w(x, t ) ] ,  as defined by the envelope of the wave'train. With 
dispersion, however, there is an additional amplitude decay due to frequency 
separation (Kranzer & Keller 1959) 

(T/To)o (4xo)-i* ( 5 )  

Combining ( l ) ,  (3), (4) and ( 5 ) ,  the total amplitude change at  constant frequency 
after travelling a distance x - xo is 

( r l / r o ) w  = (x/xo)-*exp [ - (A, + As) (x - x0)l 

2k(x - xo) v 4 bk cosh2 kq+ sinh 2kh 
= (~)- 'exp [ - (%) ( 21th + sinh 2kh 

Hunt (1952) has also given an expression for the change in amplitude of periodic 
waves in a channel where the bottom slopes uniformly [h = ho-s(z-xo)]. 
Upon correcting an error of integration in his final result, adding a term for the 
surface dissipation, and modifying the exponential coefficient to take account 
of dispersion as well as shoaling enhancement,? one obtains (Appendix 2) 

where P = - a( l /U2)/ak and the subscript 0 indicates that a quantity is to be 
evaluated at h = h,. In  (7) n and m refer to the number of small, equal incre- 
ments ax along the channel from the point of wave generation to the foot of 
the slope (x = xo) and any point x > xo on the slope where the depth is h(x), 
respectively. 

In  addition to the assumptions already made, that the surface be horizontally 
immobile and that the frequency be low enough so that the wave-number (and 
group velocity) are independent of surface tension, equations (6) and (7) also 
assume that the inviscid potential flow obtains everywhere in the region interior 
to the viscous boundary layers, whose thickness is given approximately by 
(v/w)*; the wave motion itself is assumed to be given by small-amplitude, linear 
theory. Lastly, in the derivation of the shoaling coefficient it is assumed that no 
reflexions occur from the sloping beach and that the local group velocity is every- 
where the same as if the water depth were uniform and equal to the local depth. 

t The behaviour of a dispersive wave train in water of variable depth has been discussed 
previously (Van Dorn 1964). 
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The additional assumptions require, essentially, that the following inequalities 
be satisfied: 

(1) Linearity, 7/lC2h3 < 1; (2) small amplitude, q/h < 1 ; 

(3) geometric optics, s/kh < 1. 

A discussion of the validity of these assumptions in the present experiments is 
given in $ 6 .  

Surface 

1- Generator 
---- ;,;7m ---- 

/lo 

at 60 em intervals to insure a tolerance of less than f 0.5mm throughout its 
length, and the structure was carefully levelled and bolted to the concrete 
floor. Removable lid sections were provided to reduce evaporation and exclude 
dust. The channel was also equipped with a small swimming-pool filter, circu- 
lating pump, and surface skimmer. 

Dispersive wave trains were generated at one end of the channel by a vertical 
single-stroke, impulsive generator bar having a parabolic cross-section (figure 1). 
The generator moved in heavy guides divorced from the channel structure, and 
was driven through a rocking beam and bell-crank by a variable-speed motor. 
The motor had a magnetic clutch-brake and a travel-limit cam, such that the 
generator could be started from top-centre, complete one down-and-up stroke, 
and be stopped in its initial position by automatic sequencing of the clutch and 
brake. Generator immersion was variable, but occurred during only a small 
fraction of the stroke. Because the stroke length, motor speed, immersion depth, 
and generator dimensions were all adjustable, a wide variety of wave envelope 
shapes could be produced. 

Beaches of arbitrary slope were made up from heavy plate glass supported on 
aluminium bars that were wedged between the channel sides by expansion bolts. 
The glass plates were bevelled along both edges and sealed to the walls by con- 
tinuous neoprene O-ring stock, in order to prevent wave energy from ‘leaking’ 
into the region behind the beaches. 
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Wave amplitudes were measured at arbitrary intervals along the channel by 
electrical strain-gauge pressure transducers suspended above the water from 
movable structures standing alongside the channel. Each transducer was equip- 
ped with a probe of copper capillary tubing 2 em long and 1 mm diameter which 
penetrated the surface vertically to a depth of 1 em. Wave signals were cabled 
to a central recording station, amplified, and recorded on a Minneapolis Honey- 
well galvanometer strip-chart recorder. The transducers were calibrated static- 
ally against a high-precision capacitance gauge, and dynamically by motion- 
pictures taken through a magnifying optical reticule profilometer set in the 
channel wall so as to intersect the still water surface. The reproducible measure- 
ment accuracy was found to be better than 0.001 em a t  all frequencies considered 
(n 6 o < 5n). With such high resolution, wave amplitudes were limited to 5 mm 
and one’s heartbeat was plainly visible on the recorder when standing on the 
concrete beside the channel. Even an automobile passing on the roadway 100yd. 
away produced large spurious vibrations, requiring repetition of any experiments 
then under way. 

4. Experimental procedure 
Because the surface-tension effect appeared to increase with time after the 

renewal of water in the channel, the first experiments were aimed towards ex- 
ploring its rate of increase. The tank was scrubbed, rinsed, and refilled with 
fresh (tap) water to a depth of 30 em. Transducers were installed a t  distances of 
4 and 8 m from thegenerator, andwave trains generatedunderidentical conditions 
were recorded at successive intervals of 20min. It was found that the wave 
amplitudes measured a t  equal times following the generation pulse progressively 
diminished for about an hour, following which no further diminution was 
observed. This latter condition was presumed to represent the establishment of 
some sort of contaminating film on the water surface. It was remarkable that the 
fully contaminated surfaces exhibited no obviously visible manifestation, the 
water always appearing to be in every respect as clear and fresh as when un- 
contaminated. After several hours, a temporary return to the uncontaminated 
condition could be brought about by filtering and skimming the water. These 
experiments were repeated, using distilled water in the channel, resulting in 
deferment of the fully contaminated condition by as long as 24 h, but the cost 
of daily renewal of 1OOOgal. of fresh water could not be justified for the remaining 
experiments. Thereafter, all tests were run with tap water which had been left 
standing for an hour or more. 

Dissipation experiments were next undertaken in the straight channel with 
transducers located at  4, 6, 8 and 10m from the generator, and with uniform 
water depths of 10,20 and 30 em, respectively. Duplicate runs were made at two 
generator-stroke settings, giving nearly identical wave trains, one of which was 
approximately twice the amplitude of the other, in order to detect any possible 
amplitude dependency. 

A second series of records was obtained for similar wave trains incident upon 
beaches of uniform slopes: s= A, $3, +. In  each experiment the water depth 
was maintained at  30 ern in the straight channel section ahead of the beach, and 
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the toe of the beach slope, as well as the first transducer, was located 8m from 
the generator. Three more transducers were located over the slope being tested at 
distances where the water depths were always 15, 5 and lcm, respectively. 
Again, duplicate runs were made at  single and double amplitude in each case. 

Following the experiments, the original records were taped to a drawing 
board and smooth envelopes drawn through the extrema of the wave trains, as 
showninfigure 2, which is a reproduction of a typical record made by digitizing the 
original recording and obtaining a machine plot on the computer. Next, several 
ordinates were drawn a t  convenient frequency intervals,? and the spectral 
amplitudes read from the intersections of the ordinate lines with the wave 
envelopes. The amplitudes were then corrected for transducer calibration, and 
the amplitude ratios between the 8m transducer and the other three stations 
computed for each frequency. 
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FIGURE 2. Typical wave train recorded 8 m from generator, showing method 
of determining wave envelope (spectral) amplitudes. 

5. Results 
The time change in amplitude resulting from increasing surface dissipation 

for waves propagating down a uniform channel is shown in figure 3 (but only 
schematically) where the observed amplitude ratio Tz=8m/7z=4m is given as a 
function of frequency a t  20 min intervals, starting with freshly filtered tap water. 
The solid curves were computed from (6) for an uncontaminated (cosh2 term unity) 
and fully contaminated surface. $ Under the conditions of this experiment, com- 

t In  the case of a uniform channel, the arrival time of any frequency at  a distance x 

t ,  = x / U ( w ) .  (8) from the generator is 

For a channel terminating at  x = xo in a slope s, the arrival time is 

The integration of (9) is carried out by the same method its that leading to equation (A7) 
This simple result seems not to have been given before. 

$ In  all cases, the viscosity used was that appropriate to the temperature at the time 
of the test. 
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FIGURE 3. Time change of boundary dissipation with increasing surface 
contamination. Curves were computed from equation (6). 
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FIUURE 4. Wave dissipation in a uniform channel as a function of channel length, for 
fully contaminated surface. Frequencies in descending order are o = 7 ~ ,  2n, 377 47~. 
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Figure 4 compares the computed and observed dissipation as a function of 
travel distance for four frequencies and three (uniform) water depths, for a fully- 
contaminated surface. In  these figures the amplitude ratios have been divided 
by the square-root of their respective distance ratios to normalize them to a com- 
mon origin and to show the exponential character of the dissipation corrections. 
Again, the data appear to confirm adequately the theory for uniform depth. 
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FIGURE 5. Wave dissipation over a sloping beach for fully-contaminated surface. Dashed 
(uncontaminated) and solid (contaminated) curves were computed from equation (7). 

The results of the dissipation experiments over uniform slopes are shown in 
the nine pairs of curves of figure 5 ,  where the amplitude ratios are referred to the 
reference amplitudes at  the toe of the slope, for three slopes and three water 
depths. The dashed and solid curves give the theoretical dissipation computed 
from equation (7) for an uncontaminated and fully-contaminated surface, 
respectively. Because of their complexity, and also because the local wave- 
number k is a root of the implicit relation w2 = gk tanh kh which must be found 
by iteration for each step in the indicated summations, equation (7) was pro- 
grammed for computer calculation. With the smallest slope (s = &), the data 
are still in good agreement with linear theory but the agreement becomes 
progressively poorer with decreasing depth and increasing slope. Even in the 
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worst case (h = 1 cm, s = i), however, and with incipient breaking of the highest 
waves, the maximum error is about 50 yo. 

The result is quite surprising in view of the extent by which some of the 
experimental conditions violated the inequalities assumed in the theoretical 
development given above. These inequalities, together with their appropriate 
values computed from the observed data, are given in table 1. None of the data 
points satisfy all three conditions, and in some cases where the data agree very 
well with the computed curves the linearity assumption is exceeded by almost two 
orders of magnitude. 

Slope s 
Depth 
h (cm) 

W b  
1 
2 
3 
4 
5 

1 
2 
3 
4 
5 

1 
2 
3 
4 
5 

1 1 1 
8 

._. - 
3 2  18 ... - - 

15 5 1 15 5 1 15 5 1 

1 1 1 
8 

._. - 
3 2  18 ... - - 

15 5 1 15 5 1 15 5 1 

(a)  Linearity assumption: q/cr2h < 1 

0.008 0.077 2.94 0.011 0.119 5.49 0.007 0.081 0.471 
0.004 0.040 1-02 0.004 0.056 2.14 0.004 0.032 0.947 
0.003 0.026 0.681 0.003 0.031 1.29 0.002 0.036 1.43 
0.001 0.014 0.316 0.002 0.025 0.655 0.002 0.028 1.03 

t t t 0.000 0.001 0.069 0.000 0.003 0.149 

(6) Small-amplitude assumption: 71/71 < 1 

0.001 0.004 0.030 0.002 0.006 0.056 0.001 0.004 0.048 
0.003 0.009 0.042 0.003 0.012 0.088 0.003 0.007 0.039 
0.006 0,014 0.064 0.006 0.016 0.121 0.005 0.019 0.134 
0.006 0.015 0.054 0,012 0.027 0.112 0.010 0.030 0.176 

t t t 0.004 0.003 0.019 0.005 0.006 0.041 

(c )  Geometric-optics assumption: s /u  < 1 

0.079 0-138 0.310 0,157 0.275 0.619 0.313 0.551 1.24 
0.036 0.067 0.154 0,073 0.136 0.308 0.145 0.269 0.616 
0.021 0.043 0.103 0.042 0.086 0.204 0.083 0.172 0.408 
0.013 0.030 0.076 0.025 0.060 0.151 0.051 0.121 0.303 

t t t 0.017 0.044 0.119 0.033 0.088 0.239 

t Amplitudes too small to  be resolved. 

TABLE 1. Conditions for applicability of theory (cr z kh). 

6. Discussion 
The results cited probably represent a good example of what one can learn 

from a fairly precise experiment, and indicate that linear theory can often be 
extended well beyond its assumed range of validity. Clearly, in the shallowest 
water, many of the waves were markedly asymmetric and on the verge of 
breaking, but the widest departures from the predicted values occurred because 
of reflexions from the steeper slopes, as manifested by modulation beats with 
the incident wave system. What is more remarkable is that a dispersive wave 
system can apparently be treated as the Fourier superposition of its harmonic 
components, even in a markedly non-linear rhgime. 
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Consideration of either figure 5 or equations (6) and (7) shows that all dis- 
sipative effects become negligibly small a t  frequencies substantially lower than 
postulated to avoid capillary effects. Thus these results will be of practical 
concern only over the rather limited range of frequencies considered above. 

This work was supported by the Office of Naval Research and the Defense 
Atomic Support Agency under contracts Nonr2216(16) and Nonr2216(20). I 
am indebted to Prof. G. Backus, Institute of Geophysics and Planetary Physics, 
University of California, for the suggestion that the surface effect might be 
important. 

Appendix 1. The surface damping coefficient in water of finite depth 
Assuming the surface to be horizontally immobilized, but with the wave 

particle velocity uo beneath the boundary layer to be the same as if the contami- 
nating film were absent, the modulus of decay 7 is given by the ratio of the average 
dissipation to the mean total energy of the motion (Landau & Lifshitz 1959, 
p. 244) 

Recalling that the modulus of decay for progressive waves is related to the 
damping coefficient by A, = 1/7U and that, for linear waves in water of finite 
depth w2 = gk tanh kh and U = (w/2k) (1 + Zk/sinh 2lch), we obtain the formula 
(4) of $ 2  from (A 1) above directly. 

Although a corresponding result can be obtained for a clean water surface, 
the surface dissipation in the frequency range considered is completely negligible. 

Appendix 2. Amplitude change over a sloping bottom 
We start with the integral form of (6), from $2, 

.L J 

T 2 v 9 bcosh2kh,+sinh2kh - =A[h(w)]exp -- - 
TO [ b (2w) /so ( 2kh + sinh 2kh 

where A is the shoaling coefficient. Let the slope s be related to depth by 

h = h,-s(x-xo) 

such that dh = - s dx. Then the integral in (A 2 )  becomes 

1 " bk cosh2 kh + sinh 2kh) kdh. 
&Jho ( 2kh + sinh 2k%- 

Integrationis simplified by the change of variable (T = kh, 

(bc/h) cosh2 CT + sinh 2 ( ~  
ZQ + sinh 2v 

where Q and w are related by 

w2h/g = Q tanh Q. 
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Differentiating (A 4) and rearranging terms, we get 

(a/h) dh = (2a + sinh 2 4  (sinh 2a)-lda. 

Substitution of (A 5) in (A 3) gives 

779 

(A 5 )  

which integrates to 

(coth (T - coth a,) . 1 y(1.g) (a-ao)-- bw2 

S 2g 

If we return to the original variables and use (A 4), (A2) can now be written 

- T = A[h(x)]exp [l("*[(;+;) 2o (kh-koho) -[ -(k - k )  , (A7) 
T O  

which is the same as (7), $2. 
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